Home  | Research | Groups | Schueffler

Research Group Peter Schüffler


Link to website at TUM

Peter Schüffler

Prof. Dr.

Associate

Peter Schüffler

is Professor for Computational Pathology at TU Munich.

His field of research is the area of digital and computational pathology. This includes novel machine learning approaches for the detection, segmentation and grading of cancer in pathology images, prediction of prognostic markers and outcome prediction (e.g. treatment response). Further, he investigates the efficient visualization of high-resolution digital pathology images, automated QA, new ergonomics for pathologists, and holistic integration of digital systems for clinics, research and education.

Team members @MCML

PostDocs

Link to website

Reza Nasirigerdeh

Dr.

PhD Students

Link to website

Christian Grashei

Link to website

Azar Kazemi

Link to website

Jingsong Liu

Link to website

Oskar Thaeter

Recent News @MCML

Link to MCML at MICCAI 2025

21.09.2025

MCML at MICCAI 2025

44 Accepted Papers (25 Main, and 19 Workshops)

Link to MCML Researchers in Highly-Ranked Journals

02.01.2025

MCML Researchers in Highly-Ranked Journals

130 Papers in 2025 Highlight Scientific Impact

Link to MCML at MICCAI 2024

04.10.2024

MCML at MICCAI 2024

26 Accepted Papers (9 Main, and 17 Workshops)

Link to MCML Researchers in Highly-Ranked Journals

02.01.2024

MCML Researchers in Highly-Ranked Journals

93 Papers in 2024 Highlight Scientific Impact

Publications @MCML

2025


[10] Top Journal
C. Saueressig • C. Delbridge • D. ScholzA. Kazemi • M. Z. Khan • M. Metz • B. Meyer • M. Mitsdoerffer • P. J. SchüfflerB. Wiestler
From histology to diagnosis: Leveraging pathology foundation models for glioma classification.
Computers in Biology and Medicine 197.Part A. Oct. 2025. DOI

[9] A Conference
J. LiuH. Li • C. Yang • M. Deutges • A. Sadafi • X. You • K. Breininger • N. NavabP. J. Schüffler
HASD: Hierarchical Adaption for pathology Slide-level Domain-shift.
MICCAI 2025 - 28th International Conference on Medical Image Computing and Computer Assisted Intervention. Daejeon, Republic of Korea, Sep 23-27, 2025. DOI

[8]
J. Liu • X. Deng • H. LiA. KazemiC. Grashei • G. Wilkens • X. You • T. Groll • N. Navab • C. Mogler • P. J. Schüffler
From Pixels to Pathology: Restoration Diffusion for Diagnostic-Consistent Virtual IHC.
Preprint (Aug. 2025). arXiv

[7]
C. Yang • M. Deutges • J. LiuH. LiN. Navab • C. Marr • A. Sadafi
Attention Pooling Enhances NCA-based Classification of Microscopy Images.
Preprint (Aug. 2025). arXiv

[6]
M. Fischer • P. Neher • P. J. Schüffler • S. Ziegler • S. Xiao • R. Peretzke • D. Clunie • C. Ulrich • M. Baumgartner • A. Muckenhuber • S. Dias Almeida • M. Götz • J. Kleesiek • M. Nolden • R. Braren • K. Maier-Hein
Unlocking the potential of digital pathology: Novel baselines for compression.
Journal of Pathology Informatics 17.100421. Apr. 2025. DOI

[5]
A. Weers • A. H. Berger • L. LuxP. J. SchüfflerD. Rückert • J. C. Paetzold
From Pixels to Histopathology: A Graph-Based Framework for Interpretable Whole Slide Image Analysis.
Preprint (Mar. 2025). arXiv GitHub

[4] Top Journal
V. Iwuajoku • K. Ekici • A. Haas • M. Z. Kazemi • A. Kasajima • C. Delbridge • A. Muckenhuber • E. Schmoeckel • F. Stögbauer • C. Bollwein • K. Schwamborn • K. Steiger • C. Mogler • P. J. Schüffler
An equivalency and efficiency study for one year digital pathology for clinical routine diagnostics in an accredited tertiary academic center.
Virchows Archiv. Feb. 2025. DOI

2024


[3]
M. Fischer • P. Neher • T. Wald • S. Dias Almeida • S. Xiao • P. J. Schüffler • R. Braren • M. Götz • A. Muckenhuber • J. Kleesiek • M. Nolden • K. Maier-Hein
Learned Image Compression for HE-Stained Histopathological Images via Stain Deconvolution.
MOVI @MICCAI 2024 - 2nd International Workshop on Medical Optical Imaging and Virtual Microscopy Image Analysis at the 27th International Conference on Medical Image Computing and Computer Assisted Intervention. Marrakesh, Morocco, Oct 06-10, 2024. DOI GitHub

[2] Top Journal
A. Kazemi • A. Rasouli-Saravani • M. Gharib • T. Albuquerque • S. Eslami • P. J. Schüffler
A systematic review of machine learning-based tumor-infiltrating lymphocytes analysis in colorectal cancer: Overview of techniques, performance metrics, and clinical outcomes.
Computers in Biology and Medicine 173. May. 2024. DOI

[1]
P. J. Schüffler • K. Steiger • C. Mogler
Künstliche Intelligenz in der Pathologie – wie, wo und warum?
Die Pathologie. Mar. 2024. DOI