Home  | Research | Groups | Ommer

Research Group Björn Ommer


Link to website at LMU PI Matchmaking

Björn Ommer

Prof. Dr.

Principal Investigator

Björn Ommer

heads the Computer Vision & Learning Group at LMU Munich.

His research interests include all aspects of semantic image and video understanding based on (deep) machine learning. His special focus is on generative approaches for visual synthesis (e.g. Stable Diffusion), invertible deep models for explainable AI, deep metric and representation learning, and self-supervised learning paradigms and their interdisciplinary applications in the digital humanities and neurosciences.

Team members @MCML

PostDocs

Link to website

Vincent Tao Hu

Dr.

PhD Students

Link to website

Olga Grebenkova

Link to website

Felix Krause

Link to website

Pingchuan Ma

Link to website

Johannes Schusterbauer

Link to website

Jannik Wiese

Recent News @MCML

Link to Björn Ommer Appointed LMU Chief AI Officer

20.10.2025

Björn Ommer Appointed LMU Chief AI Officer

LMU News

Link to MCML at ICCV 2025

17.10.2025

MCML at ICCV 2025

28 Accepted Papers (22 Main, and 6 Workshops)

Link to Björn Ommer Featured in WELT

26.09.2025

AI Bias and Why Neutrality Remains a Human Responsibility

Link to Björn Ommer Featured on ZDF NANO Talk

24.09.2025

Discussing the Essence, Impact, and Future of Artificial Intelligence

Publications @MCML

2025


[34] A* Conference
T. Ressler-Antal • F. Fundel • M. B. Alaya • S. A. Baumann • F. Krause • M. Gui • B. Ommer
DisMo: Disentangled Motion Representations for Open-World Motion Transfer.
NeurIPS 2025 - 39th Conference on Neural Information Processing Systems. San Diego, CA, USA, Nov 30-Dec 07, 2025. Spotlight Presentation. To be published. Preprint available. URL

[33] A* Conference
S. A. Baumann • N. Stracke • T. Phan • B. Ommer
What If: Understanding Motion Through Sparse Interactions.
ICCV 2025 - IEEE/CVF International Conference on Computer Vision. Honolulu, Hawai’i, Oct 19-23, 2025. To be published. Preprint available. URL

[32] A* Conference
F. Krause • T. Phan • M. Gui • S. A. Baumann • V. T. HuB. Ommer
TREAD: Token Routing for Efficient Architecture-agnostic Diffusion Training.
ICCV 2025 - IEEE/CVF International Conference on Computer Vision. Honolulu, Hawai’i, Oct 19-23, 2025. To be published. Preprint available. arXiv

[31] A* Conference
P. Ma • M. Gui • J. Schusterbauer • X. Yang • O. GrebenkovaV. T. HuB. Ommer
Stochastic Interpolants for Revealing Stylistic Flows across the History of Art.
ICCV 2025 - IEEE/CVF International Conference on Computer Vision. Honolulu, Hawai’i, Oct 19-23, 2025. To be published. Preprint available. URL GitHub

[30] A* Conference
P. Ma • X. Yang • Y. Li • M. Gui • F. KrauseJ. SchusterbauerB. Ommer
SCFlow: Implicitly Learning Style and Content Disentanglement with Flow Models.
ICCV 2025 - IEEE/CVF International Conference on Computer Vision. Honolulu, Hawai’i, Oct 19-23, 2025. To be published. Preprint available. URL

[29]
M. Gui • J. Schusterbauer • T. Phan • F. Krause • J. Susskind • M. A. Bautista • B. Ommer
Adapting Self-Supervised Representations as a Latent Space for Efficient Generation.
Preprint (Oct. 2025). arXiv

[28]
Y. Li • R. Buchert • B. Schmitz-Koep • T. Grimmer • B. Ommer • D. M. Hedderich • I. Yakushev • C. Wachinger
Diffusion Bridge Networks Simulate Clinical-grade PET from MRI for Dementia Diagnostics.
Preprint (Oct. 2025). arXiv GitHub

[27]
R.-A. Matişan • V. T. Hu • G. Bartosh • B. Ommer • C. G. M. Snoek • M. Welling • J.-W. van de Meent • M. M. Derakhshani • F. Eijkelboom
Purrception: Variational Flow Matching for Vector-Quantized Image Generation.
Preprint (Oct. 2025). arXiv

[26]
Y. Qu • Q. Wang • Y. Mao • V. T. HuB. Ommer • X. Ji
Can Prompt Difficulty be Online Predicted for Accelerating RL Finetuning of Reasoning Models?
Preprint (Jul. 2025). arXiv

[25] A* Conference
S. A. Baumann • F. Krause • M. Neumayr • N. Stracke • M. Sevi • V. T. HuB. Ommer
Continuous, Subject-Specific Attribute Control in T2I Models by Identifying Semantic Directions.
CVPR 2025 - IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, TN, USA, Jun 11-15, 2025. DOI GitHub

[24] A* Conference
J. Schusterbauer • M. Gui • F. Fundel • B. Ommer
Diff2Flow: Training Flow Matching Models via Diffusion Model Alignment.
CVPR 2025 - IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, TN, USA, Jun 11-15, 2025. DOI

[23] A* Conference
N. Stracke • S. A. Baumann • K. Bauer • F. Fundel • B. Ommer
CleanDIFT: Diffusion Features without Noise.
CVPR 2025 - IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, TN, USA, Jun 11-15, 2025. DOI

[22] A* Conference
Y. YeganehA. Farshad • I. Charisiadis • M. Hasny • M. Hartenberger • B. OmmerN. Navab • E. Adeli
Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis.
CVPR 2025 - IEEE/CVF Conference on Computer Vision and Pattern Recognition. Nashville, TN, USA, Jun 11-15, 2025. Highlight Paper. DOI

[21]
A. Aghdam • V. T. HuB. Ommer
ActAlign: Zero-Shot Fine-Grained Video Classification via Language-Guided Sequence Alignment.
Preprint (Jun. 2025). arXiv

[20] A* Conference
E. Abdelrahman • L. Zhao • V. T. Hu • M. Cord • P. Perez • M. Elhoseiny
ToddlerDiffusion: Interactive Structured Image Generation with Cascaded Schrödinger Bridge.
ICLR 2025 - 13th International Conference on Learning Representations. Singapore, Apr 24-28, 2025. URL GitHub

[19]
D. Kotovenko • O. GrebenkovaB. Ommer
EDGS: Eliminating Densification for Efficient Convergence of 3DGS.
Preprint (Apr. 2025). arXiv

[18] A Conference
F. Fundel • J. SchusterbauerV. T. HuB. Ommer
Distillation of Diffusion Features for Semantic Correspondence.
WACV 2025 - IEEE/CVF Winter Conference on Applications of Computer Vision. Tucson, AZ, USA, Feb 28-Mar 04, 2025. DOI

[17] A* Conference
A. Davtyan • S. Sameni • B. Ommer • P. Favaro
CAGE: Unsupervised Visual Composition and Animation for Controllable Video Generation.
AAAI 2025 - 39th Conference on Artificial Intelligence. Philadelphia, PA, USA, Feb 25-Mar 04, 2025. DOI GitHub

[16] A* Conference
P. Ma • L. Rietdorf • D. Kotovenko • V. T. HuB. Ommer
Does VLM Classification Benefit from LLM Description Semantics?
AAAI 2025 - 39th Conference on Artificial Intelligence. Philadelphia, PA, USA, Feb 25-Mar 04, 2025. Invited talk. DOI

[15] A* Conference
M. Gui • J. Schusterbauer • U. Prestel • P. Ma • D. Kotovenko • O. Grebenkova • S. A. Baumann • V. T. HuB. Ommer
DepthFM: Fast Generative Monocular Depth Estimation with Flow Matching.
AAAI 2025 - 39th Conference on Artificial Intelligence. Philadelphia, PA, USA, Feb 25-Mar 04, 2025. Oral Presentation. DOI

[14]
M. Fuest • V. T. HuB. Ommer
MaskFlow: Discrete Flows For Flexible and Efficient Long Video Generation.
Preprint (Feb. 2025). arXiv

[13] Top Journal
E. Eulig • F. Jäger • J. Maier • B. Ommer • M. Kachelrieß
Reconstructing and analyzing the invariances of low-dose CT image denoising networks.
Medical Physics 52. Jan. 2025. DOI

2024


[12] A* Conference
J. Wang • M. GhahremaniY. LiB. OmmerC. Wachinger
Stable-Pose: Leveraging Transformers for Pose-Guided Text-to-Image Generation.
NeurIPS 2024 - 38th Conference on Neural Information Processing Systems. Vancouver, Canada, Dec 10-15, 2024. URL GitHub

[11]
V. T. HuB. Ommer
[MASK] is All You Need.
Preprint (Dec. 2024). arXiv

[10]
J. Wang • Z. Qin • Y. Zhang • V. T. HuB. Ommer • R. Briq • S. Kesselheim
Scaling Image Tokenizers with Grouped Spherical Quantization.
Preprint (Dec. 2024). arXiv

[9] A* Conference
V. T. Hu • S. A. Baumann • M. Gui • O. GrebenkovaP. Ma • J. S. Fischer • B. Ommer
ZigMa: A DiT-style Zigzag Mamba Diffusion Model.
ECCV 2024 - 18th European Conference on Computer Vision. Milano, Italy, Sep 29-Oct 04, 2024. DOI

[8] A* Conference
D. Kotovenko • O. Grebenkova • N. Sarafianos • A. Paliwal • P. Ma • O. Poursaeed • S. Mohan • Y. Fan • Y. Li • R. Ranjan • B. Ommer
WaSt-3D: Wasserstein-2 Distance for Scene-to-Scene Stylization on 3D Gaussians.
ECCV 2024 - 18th European Conference on Computer Vision. Milano, Italy, Sep 29-Oct 04, 2024. DOI GitHub

[7] A* Conference
N. Stracke • S. A. Baumann • J. M. Susskind • M. A. Bautista • B. Ommer
CTRLorALTer: Conditional LoRAdapter for Efficient 0-Shot Control and Altering of T2I Models.
ECCV 2024 - 18th European Conference on Computer Vision. Milano, Italy, Sep 29-Oct 04, 2024. DOI GitHub

[6] A* Conference
J. S. Fischer • M. Gui • P. Ma • N. Stracke • S. A. Baumann • B. Ommer
FMBoost: Boosting Latent Diffusion with Flow Matching.
ECCV 2024 - 18th European Conference on Computer Vision. Milano, Italy, Sep 29-Oct 04, 2024. Oral Presentation. DOI

[5] Top Journal
E. Eulig • B. Ommer • M. Kachelrieß
Benchmarking deep learning-based low-dose CT image denoising algorithms.
Medical Physics 51. Sep. 2024. DOI

[4]
M. Fuest • P. Ma • M. Gui • J. SchusterbauerV. T. HuB. Ommer
Diffusion Models and Representation Learning: A Survey.
Preprint (Jul. 2024). arXiv GitHub

2023


[3]
A. FarshadY. Yeganeh • Y. Chi • C. Shen • B. OmmerN. Navab
Scenegenie: Scene graph guided diffusion models for image synthesis.
Workshop @ICCV 2023 - Workshop at the IEEE/CVF International Conference on Computer Vision. Paris, France, Oct 02-06, 2023. DOI

[2] A* Conference
D. Kotovenko • P. Ma • T. Milbich • B. Ommer
Cross-Image-Attention for Conditional Embeddings in Deep Metric Learning.
CVPR 2023 - IEEE/CVF Conference on Computer Vision and Pattern Recognition. Vancouver, Canada, Jun 18-23, 2023. DOI

2022


[1] A* Conference
A. Blattmann • R. Rombach • K. Oktay • B. Ommer
Retrieval-Augmented Diffusion Models.
NeurIPS 2022 - 36th Conference on Neural Information Processing Systems. New Orleans, LA, USA, Nov 28-Dec 09, 2022. URL