Home  | Research | Groups | Anne-Laure Boulesteix

Research Group Anne-Laure Boulesteix


Link to website at LMU

Anne-Laure Boulesteix

Prof. Dr.

Principal Investigator

Anne-Laure Boulesteix

is Professor for Biometry in Molecular Medicine at LMU Munich.

Her working group focuses on developing advanced biostatistical methods for prediction modeling and high-dimensional data analysis, with applications in biomedical research, especially omics data. Additionally, they engage in metascience, examining research practices to improve study reliability and address issues like selective reporting and researchers’ degrees of freedom.

Team members @MCML

PostDocs

Link to website

Moritz Herrmann

Dr.

Transfer Coordinator

Link to website

Roman Hornung

Dr.

PhD Students

Mathilde Dicaire-Cartier

Link to website

Nicole Ellenbach

Link to website

Julian Lange

Link to website

Maximilian Mandl

Link to website

Christina Sauer (née Nießl)

Link to website

Hannah Schulz-Kümpel

Link to website

Milena Wünsch

Recent News @MCML

Link to How Reliable Are Machine Learning Methods? With Anne-Laure Boulesteix and Milena Wünsch

23.07.2025

How Reliable Are Machine Learning Methods? With Anne-Laure Boulesteix and Milena Wünsch

Research Film

Link to Anne-Laure Boulesteix Receives Reinhart Koselleck Grant

07.07.2025

Anne-Laure Boulesteix Receives Reinhart Koselleck Grant

Funding for Innovative Statistical Research

Link to MCML Researchers With 130 Papers in Highly-Ranked Journals

02.01.2025

MCML Researchers With 130 Papers in Highly-Ranked Journals

Link to Epistemic Foundations and Limitations of Statistics and Science

19.12.2024

Epistemic Foundations and Limitations of Statistics and Science

Blogpost on the Replication Crisis

Publications @MCML

2025


[59] Top Journal
M. Abrahamowicz • M.-E. Beauchamp • A.-L. Boulesteix • T. P. Morris • W. Sauerbrei • J. S. Kaufman • o. b. o. t. STRATOS Simulation Panel
Efficient Computation of Image Persistence.
Discrete and Computational Geometry. Oct. 2025. DOI

[58] Top Journal
D. Dobler • H. Binder • A.-L. Boulesteix • J.-B. Igelmann • D. Köhler • U. Mansmann • M. Pauly • A. Scherag • M. Schmid • A. A. Tawil • S. Weber
ChatGPT as a Tool for Biostatisticians: A Tutorial on Applications, Opportunities, and Limitations.
Statistics in Medicine 44.23-24. Oct. 2025. DOI

[57] Top Journal
M. Wünsch • M. Noltenius • M. Mohr • T. P. Morris • A.-L. Boulesteix
Rethinking the Handling of Method Failure in Comparison Studies.
Statistics in Medicine. Oct. 2025. DOI

[56]
A.-L. Boulesteix • P. Callahan • L. Hanssum • V. Gaertner • E. Hoster
Bridging the Gap Between Methodological Research and Statistical Practice: Toward Translational Simulation Research.
Preprint (Oct. 2025). arXiv

[55] Top Journal
A. S. Gutmann • M. M. Mandl • C. Rieder • D. J. Hoechter • K. Dietz • B. P. Geisler • A.-L. Boulesteix • R. Tomasi • L. C. Hinske
Comparing supervised machine learning algorithms for the prediction of partial arterial pressure of oxygen during craniotomy.
BMC Medical Informatics and Decision Making 25.326. Sep. 2025. DOI


[53] Top Journal
M. M. MandlA.-L. Boulesteix • S. Burgess • V. Zuber
Outlier Detection in Mendelian Randomization.
Statistics in Medicine 44.15-17. Jul. 2025. DOI

[52]
C. Sauer • F. J. D. Lange • M. Thurow • I. Dormuth • A.-L. Boulesteix
Statistical parametric simulation studies based on real data.
Preprint (Apr. 2025). arXiv

[51] Top Journal
R. Hornung • M. Nalenz • L. SchneiderA. BenderL. Bothmann • F. Dumpert • B. Bischl • T. Augustin • A.-L. Boulesteix
Evaluating Machine Learning Models in Non-Standard Settings: An Overview and New Findings.
Statistical Science. Mar. 2025. To be published. Preprint available. arXiv URL

[50]
F. J. D. Lange • J. C. Wilcke • S. Hoffmann • M. HerrmannA.-L. Boulesteix
On 'confirmatory' methodological research in statistics and related fields.
Preprint (Mar. 2025). arXiv

[49]
M. M. Mandl • F. Weber • T. Wöhrle • A.-L. Boulesteix
The impact of the storytelling fallacy on real data examples in methodological research.
Preprint (Mar. 2025). arXiv


[47] Top Journal
M. WünschC. SauerM. Herrmann • L. C. Hinske • A.-L. Boulesteix
To tweak or not to tweak. How exploiting flexibilities in gene set analysis leads to over-optimism.
Biometrical Journal 67.1. Feb. 2025. DOI

[46] Top Journal
M. Abrahamowicz • M.-E. Beauchamp • A.-L. Boulesteix • T. P. Morris • W. Sauerbrei • J. S. Kaufman • o. b. o. t. STRATOS Simulation Panel
Data-driven simulations to assess the impact of study imperfections in time-to-event analyses.
American Journal of Epidemiology 194.1. Jan. 2025. DOI

[45]
H. Schulz-Kümpel • S. Fischer • T. NaglerA.-L. BoulesteixB. BischlR. Hornung
Constructing Confidence Intervals for 'the' Generalization Error – a Comprehensive Benchmark Study.
Journal of Data-centric Machine Learning Research 2.6. Jan. 2025. To be published. Preprint available. URL

2024


[44]
C. SauerA.-L. Boulesteix • L. Hanßum • F. Hodiamont • C. Bausewein • T. Ullmann
Beyond algorithm hyperparameters: on preprocessing hyperparameters and associated pitfalls in machine learning applications.
Preprint (Dec. 2024). arXiv

[43]
T. Woehrle • F. Pfeiffer • M. M. Mandl • W. Sobtzick • J. Heitzer • A. Krstova • L. Kamm • M. Feuerecker • D. Moser • M. Klein • B. Aulinger • M. Dolch • A.-L. Boulesteix • D. Lanz • A. Choukér
Point-of-care breath sample analysis by semiconductor-based E-Nose technology discriminates non-infected subjects from SARS-CoV-2 pneumonia patients: a multi-analyst experiment.
MedComm 5.11. Nov. 2024. DOI

[42]
L. Barreñada • P. Dhiman • D. Timmerman • A.-L. Boulesteix • B. Van Calster
Understanding overfitting in random forest for probability estimation: a visualization and simulation study.
Diagnostic and Prognostic Research 8.14. Sep. 2024. DOI

[41] Top Journal
Y. Li • T. Herold • U. Mansmann • R. Hornung
Does combining numerous data types in multi-omics data improve or hinder performance in survival prediction? Insights from a large-scale benchmark study.
Earth System Science Data 24.244. Sep. 2024. DOI

[40]
R. Hornung • A. Hapfelmeier
Multi forests: Variable importance for multi-class outcomes.
Preprint (Sep. 2024). arXiv

[39]
M. Herrmann
Dimensionality and Distance: Curse or Blessing? Geometrical Aspects of Nearest Neighbor Computation in High-Dimensional Data.
Statistical Computing 2024 - 54. Arbeitstagung der Arbeitsgruppen Statistical Computing, Klassifikation und Datenanalyse in den Biowissenschaften. Günzburg, Germany, Jul 28-31, 2024. PDF

[38] A* Conference
M. Herrmann • F. J. D. Lange • K. Eggensperger • G. CasalicchioM. WeverM. FeurerD. RügamerE. HüllermeierA.-L. BoulesteixB. Bischl
Position: Why We Must Rethink Empirical Research in Machine Learning.
ICML 2024 - 41st International Conference on Machine Learning. Vienna, Austria, Jul 21-27, 2024. URL

[37] Top Journal
M. M. Mandl • A. S. Becker-Pennrich • L. C. Hinske • S. Hoffmann • A.-L. Boulesteix
Addressing researcher degrees of freedom through minP adjustment.
BMC Medical Research Methodology 24.152. Jul. 2024. DOI

[36] Top Journal
M. Herrmann • D. Kazempour • F. Scheipl • P. Kröger
Enhancing cluster analysis via topological manifold learning.
Data Mining and Knowledge Discovery 38. Apr. 2024. DOI

[35] Top Journal
G. S. Collins • K. G. M. Moons • P. Dhiman • R. D. Riley • A. L. Beam • B. Van Calster • M. Ghassemi • X. Liu • J. B. Reitsma • M. van Smeden • A.-L. Boulesteix • J. C. Camaradou • L. A. Celi • S. Denaxas • A. K. Denniston • B. Glocker • R. M. Golub • H. Harvey • G. Heinze • M. M. Hoffman • A. P. Kengne • E. Lam • N. Lee • E. W. Loder • L. Maier-Hein • B. A. Mateen • M. D. McCradden • L. Oakden-Rayner • J. Ordish • R. Parnell • S. Rose • K. Singh • L. Wynants • P. Logullo
TRIPOD+AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods.
The BMJ 385.e078378. Apr. 2024. DOI

[34]
M. WünschM. Herrmann • E. Noltenius • M. Mohr • T. P. Morris • A.-L. Boulesteix
On the handling of method failure in comparison studies.
Preprint (Apr. 2024). arXiv

[33] Top Journal
M. M. Mandl • S. Hoffmann • S. Bieringer • A. E. Jacob • M. Kraft • S. Lemster • A.-L. Boulesteix
Raising awareness of uncertain choices in empirical data analysis: A teaching concept toward replicable research practices.
PLOS Computational Biology 20.3. Mar. 2024. DOI

[32] Top Journal
C. Sauer • S. Hoffmann • T. Ullmann • A.-L. Boulesteix
Explaining the optimistic performance evaluation of newly proposed methods: A cross-design validation experiment.
Biometrical Journal 66.1. Jan. 2024. DOI

[31] Top Journal
B. S. Siepe • F. Bartoš • T. P. Morris • A.-L. Boulesteix • D. W. Heck • S. Pawel
Simulation Studies for Methodological Research in Psychology: A Standardized Template for Planning, Preregistration, and Reporting.
Psychological Methods Advance online publication. Jan. 2024. DOI

[30] Top Journal
Z. S. Dunias • B. Van Calster • D. Timmerman • A.-L. Boulesteix • M. van Smeden
A comparison of hyperparameter tuning procedures for clinical prediction models: A simulation study.
Statistics in Medicine. Jan. 2024. DOI

[29]
R. Hornung • F. Ludwigs • J. Hagenberg • A.-L. Boulesteix
Prediction approaches for partly missing multi-omics covariate data: A literature review and an empirical comparison study.
Wiley Interdisciplinary Reviews: Computational Statistics 16.1. Jan. 2024. DOI

[28]
M. WünschC. Sauer • P. Callahan • L. C. Hinske • A.-L. Boulesteix
From RNA sequencing measurements to the final results: a practical guide to navigating the choices and uncertainties of gene set analysis.
Wiley Interdisciplinary Reviews: Computational Statistics 16.1. Jan. 2024. DOI

2023


[27]
J. Gauss • F. ScheiplM. Herrmann
DCSI–An improved measure of cluster separability based on separation and connectedness.
Preprint (Oct. 2023). arXiv

[26]
S. Hoffmann • F. ScheiplA.-L. Boulesteix
Reproduzierbare und replizierbare Forschung.
Moderne Verfahren der Angewandten Statistik. Sep. 2023. DOI

[25]
I. van Mechelen • A.-L. Boulesteix • R. Dangl • N. Dean • C. Hennig • F. Leisch • D. Steinley • M. J. Warrens
A white paper on good research practices in benchmarking: The case of cluster analysis.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 13.6. Jul. 2023. DOI

[24]
M. HerrmannF. PfistererF. Scheipl
A geometric framework for outlier detection in high-dimensional data.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery e1491. Apr. 2023. DOI

[23]
T. UllmannA. Beer • M. Hünemörder • T. SeidlA.-L. Boulesteix
Over-optimistic evaluation and reporting of novel cluster algorithms: An illustrative study.
Advances in Data Analysis and Classification 17. Mar. 2023. DOI

[22]
B. BischlM. BinderM. LangT. Pielok • J. Richter • S. Coors • J. ThomasT. UllmannM. BeckerA.-L. Boulesteix • D. Deng • M. Lindauer
Hyperparameter optimization: Foundations, algorithms, best practices, and open challenges.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 13.2. Mar. 2023. DOI

[21] Top Journal
T. UllmannS. Peschel • P. Finger • C. L. MüllerA.-L. Boulesteix
Over-optimism in unsupervised microbiome analysis: Insights from network learning and clustering.
PLOS Computational Biology 19.1. Jan. 2023. DOI

2022


[20]


[18] Top Journal
M. van Smeden • G. Heinze • B. Van Calster • F. W. Asselbergs • P. E. Vardas • N. Bruining • P. de Jaegere • J. H. Moore • S. Denaxas • A.-L. Boulesteix • K. G. M. Moons
Critical appraisal of artificial intelligence-based prediction models for cardiovascular disease.
European Heart Journal 43.31. Aug. 2022. DOI

[17]
T. Ullmann • C. Hennig • A.-L. Boulesteix
Validation of cluster analysis results on validation data: A systematic framework.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 12.3. May. 2022. DOI

[16]
C. SauerM. Herrmann • C. Wiedemann • G. CasalicchioA.-L. Boulesteix
Over-optimism in benchmark studies and the multiplicity of design and analysis options when interpreting their results.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 12.2. Mar. 2022. DOI

2021


[15]
M. HerrmannF. Scheipl
A Geometric Perspective on Functional Outlier Detection.
Stats 4.4. Nov. 2021. DOI

[14]
H. Seibold • A. Charlton • A.-L. Boulesteix • S. Hoffmann
Statisticians, Roll Up Your Sleeves! There's A Crisis to be Solved.
Significance 18.4. Aug. 2021. DOI

[13] Top Journal
H. Seibold • S. Czerny • S. Decke • R. Dieterle • T. Eder • S. Fohr • N. Hahn • R. Hartmann • C. Heindl • P. Kopper • D. Lepke • V. Loidl • M. M. Mandl • S. Musiol • J. Peter • A. Piehler • E. Rojas • S. Schmid • H. Schmidt • M. Schmoll • L. SchneiderX.-Y. ToV. Tran • A. Völker • M. Wagner • J. Wagner • M. Waize • H. Wecker • R. Yang • S. Zellner • M. Nalenz
A computational reproducibility study of PLOS ONE articles featuring longitudinal data analyses.
PLOS One 16.6. Jun. 2021. DOI

[12] Top Journal
S. Klau • S. Hoffmann • C. J. Patel • J. P. A. Ioannidis • A.-L. Boulesteix
Examining the robustness of observational associations to model, measurement and sampling uncertainty with the vibration of effects framework.
International Journal of Epidemiology 50.1. Feb. 2021. DOI

2020


[11]
M. HerrmannF. Scheipl
Unsupervised Functional Data Analysis via Nonlinear Dimension Reduction.
Preprint (Dec. 2020). arXiv

[10]
A.-L. Boulesteix • S. Hoffmann • A. Charlton • H. Seibold
A replication crisis in methodological research?
Significance 17.5. Oct. 2020. DOI

[9] Top Journal
M. Herrmann • P. Probst • R. Hornung • V. Jurinovic • A.-L. Boulesteix
Large-scale benchmark study of survival prediction methods using multi-omics data.
Briefings in Bioinformatics. Aug. 2020. DOI

[8]
N. EllenbachA.-L. BoulesteixB. Bischl • K. Unger • R. Hornung
Improved outcome prediction across data sources through robust parameter tuning.
Journal of Classification 38. Jul. 2020. DOI

[7] Top Journal
C. Stachl • Q. Au • R. Schoedel • S. D. Gosling • G. M. Harari • D. Buschek • S. T. Völkel • T. Schuwerk • M. Oldemeier • T. Ullmann • H. Hussmann • B. Bischl • M. Bühner
Predicting personality from patterns of behavior collected with smartphones.
Proceedings of the National Academy of Sciences 117.30. Jul. 2020. DOI

[6] Top Journal
S. Klau • M.-L. Martin-Magniette • A.-L. Boulesteix • S. Hoffmann
Sampling uncertainty versus method uncertainty: a general framework with applications to omics biomarker selection.
Biometrical Journal 62.3. May. 2020. DOI



2019


[3] Top Journal
L. M. Weber • W. Saelens • R. Cannoodt • C. Soneson • A. Hapfelmeier • P. P. Gardner • A.-L. Boulesteix • Y. Saeys • M. D. Robinson
Essential guidelines for computational method benchmarking.
Genome Biology 20.125. Jun. 2019. DOI

[2] Top Journal
P. Probst • A.-L. BoulesteixB. Bischl
Tunability: Importance of Hyperparameters of Machine Learning Algorithms.
Journal of Machine Learning Research 20. Mar. 2019. PDF

[1]
P. Probst • M. N. Wright • A.-L. Boulesteix
Hyperparameters and Tuning Strategies for Random Forest.
Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 9.3. Jan. 2019. DOI