Home  | Publications | PKD+21

Mcboost: Multi-Calibration Boosting for R

MCML Authors

Abstract

Given the increasing usage of automated prediction systems in the context of high-stakes de- cisions, a growing body of research focuses on methods for detecting and mitigating biases in algorithmic decision-making. One important framework to audit for and mitigate biases in predictions is that of Multi-Calibration, introduced by Hebert-Johnson et al. (2018). The underlying fairness notion, Multi-Calibration, promotes the idea of multi-group fairness and requires calibrated predictions not only for marginal populations, but also for subpopulations that may be defined by complex intersections of many attributes. A simpler variant of Multi- Calibration, referred to as Multi-Accuracy, requires unbiased predictions for large collections of subpopulations. Hebert-Johnson et al. (2018) proposed a boosting-style algorithm for learning multi-calibrated predictors. Kim et al. (2019) demonstrated how to turn this al- gorithm into a post-processing strategy to achieve multi-accuracy, demonstrating empirical effectiveness across various domains. This package provides a stable implementation of the multi-calibration algorithm, called MCBoost. In contrast to other Fair ML approaches, MC- Boost does not harm the overall utility of a prediction model, but rather aims at improving calibration and accuracy for large sets of subpopulations post-training. MCBoost comes with strong theoretical guarantees, which have been explored formally in Hebert-Johnson et al. (2018), Kim et al. (2019), Dwork et al. (2019), Dwork et al. (2020) and Kim et al. (2021).

article PKD+21


The Journal of Open Source Software

6.64. Aug. 2021.

Authors

F. Pfisterer • C. Kern • S. Dandl • M. Sun • M. P. Kim • B. Bischl

Links

DOI

Research Area

 A1 | Statistical Foundations & Explainability

BibTeXKey: PKD+21

Back to Top